EUDOXE, CALIPPE, HIPPARQUE

On a assez dit que Platon n’était pas véritablement astronome. Il semble cependant que son enseignement oral ait été bien plus complet que les écrits que nous avons. La voie compliquée qui nous l’a transmis est la suivante : Eudoxe de Cnide suit ses enseignements, et les consigna

Eudème de Rhodes, élève d’Aristote les a inscrits dans son *Histoire de l’astronomie*

Le philosophe Sosigène, maître d’Alexandre d’Aphrodise (IIe siècle ap. J.C.) a recopié le texte précédent Simplicius (néo-platonicien du Vᵉ siècle) les restitue dans son commentaire du *de caelo*.

Voici le problème, tel que Platon l’aurait donc posé :

“Platon admet en principe que les corps célestes se meuvent d’un mouvement circulaire, uniforme et constamment régulier ; il pose alors aux mathématiciens ce problème […] quels sont les mouvements circulaires, uniformes et parfaitement réguliers qu’il convient de prendre pour hypothèses, afin que l’on puisse sauver les apparences présentées par les planètes” (in Duhem, p.3 et *Aube du savoir*, p.28). Ce texte est considéré comme fondamental aussi par G. Aujac.

Remarque de vocabulaire : *phénomènes ou apparences* et, au dessous, plus fondamentalement, ou au dessus du point de vue de la dignité du savoir, les *fondements ou hypothèses* (voc. Encore employé chez Descartes).

Platon semble avoir été strict sur un point supplémentaire : les mouvements circulaires devaient avoir tous le même centre, c.a.d. le centre de la terre (enjeu important par la suite).

Le système des sphères qui va en résulter soulève une question, formulée par Duhem

« Ces sphères homocentriques, Platon les regardait-il comme réellement existantes au sein de la substance céleste ? N’y voyait-il, au contraire, comme Théon de Smyrne (père d’Hypathie) semble l’insinuer, que des représentations propres à seconder la raison du secours de l’imagination ? Entre ces deux alternatives, il serait malaisé de choisir en s’autorisant de textes précis ; mais il serait bien étrange que Platon n’eût pas mis ces globes solides au nombre des réalités permanentes que la géométrie nous révèle » (Duhem, *id.*, p.31). J’en suis bien d’accord.

Dans ce système, chaque planète a son propre sous-système, indépendant des autres, isolé en quelque sorte, sans prédéminence. Il faut trois ou quatre sphères emboîtées par planète. Elles ont donc même centre et sont en rotation de la façon suivante : l’axe de rotation de la sphère intérieure est fixé à la suivant ; celle-ci est en rotation autour d’un autre axe lui-même fixé sur la suivante etc. La planète est fixée sur l’équateur de la sphère intérieure.

La sphère S₁ la plus extérieure tourne, comme la sphère des étoiles, en 24 heures, dans le sens dit « rétrograde », d’orient en occident.
La sphère S_2, immédiatement intérieure, tourne dans le sens opposé (sens direct), son plan équatorial est le plan de l'écliptique. La durée de révolution est différente (un peu moins d'un mois pour la lune, un an pour le soleil). C'est la durée de parcours du cercle écliptique. Il correspond à une année planétaire.

Jusque là c'est le système « trop simple de Platon », avec lequel on n'obtient que la « position moyenne » de la planète. La « position vraie » réclame d'autres combinaisons. C'est le rôle du « modèle planétaire ».

Deux autres sphères

S_3 tourne sur un axe situé dans le plan de l'écliptique, perpendiculaire au précédent. Un tour en une révolution synodique : retour des alignements Terre-Soleil-planète

S_4 porte, sur son équateur, la planète et son axe est peu incliné sur le précédent ; l'inclinaison dépend de chaque planète ; la vitesse est la même que S_4, mais inverse.

Ces sphères ne sont pas accessibles à nos perceptions, à la vue.

Les deux premières restituent le mouvement diurne des étoiles et la longue oscillation de la planète par rapport aux étoiles, dans l’année. La lune et le soleil n’ont que trois sphères en raison de mouvements plus simples (on se demande même pourquoi le soleil n’en a pas que deux : idée d’un plan écliptique, a priori, distinct de celui, pourtant coincident, du soleil).

Les deux dernières sont plus compliquées : elles doivent expliquer le mouvement en latitude, au dessus et au dessous du plan de l'écliptique et aussi les stations et rétrogradations. La combinaison des deux rotations, indépendamment de S_1 et S_2 donne un hyppopède. Le point double est la « position moyenne ». On obtient les oscillations de latitude et si on combine avec la rotation de S_2 on aussi les stations et rétrogradations. Voir ici les schémas de North, p.72-76. Cette courbe a eu une très grande importance, astronomique et géométrique. Géométriquement, elle correspond à l’intersection d’un cylindre et d’une sphere.

Les résultats de ce système de 27 sphères sont inégaux : Les modèles de Jupiter et Saturne sont satisfaisants, passables pour Mercure et très mauvais pour Vénus (? ce n’est pas le cas selon Duhem)et Mars. En fait le système ne dispose que de deux paramètres fondamentaux que l’ En fait le système ne dispose que de deux paramètres fondamentaux que l’on peut faire varier : la vitesse « dans et de » l’hyppopède et la taille de celle-ci. Ce n’est pas rien : la vitesse dans et de l’hyppopède, en termes modernes correspondent aux vitesses angulaires de la terre et de la planète considérée par rapport au soleil et la taille de l’hyppopède correspond au rapport des dimensions de l’orbite de la planète à celle de la terre. C’est donc un « vrai » système quantifié qui est ici proposé et conçu.

Calippe

Le modèle, la théorie, les hypothèses étaient prises en défaut : que faire ? Une révolution, un changement de théorie ou des aménagements. La réponse réformiste fut adoptée par Calippe de Cyzique, sans doute élève d’Eudoxe. Il se rend à Athènes (troisième siècle), il se joint à Aristote et, avec celui-ci corrige et améliore le système d’Eudoxe. Selon Simplicius, il augmente le nombre de sphères : deux de plus pour la lune et le soleil, et une de plus pour Mars, Venus et Mercure. Les sphères supplémentaires du soleil devant rendre compte de l’inégalité des saisons, dont Eudoxe ne tenait pas compte. Le nombre des sphères est alors porté à 34.

2
Hipparque

Hipparque de Nicée, proche dans le temps des pionniers de l’astronomie circulaire, transforme la théorie encore bien vague, bien mal assurée en une solide doctrine et lui assure ses premiers succès et découvertes.

On sait très peu de chose de son existence, sinon les dates de son activité astronomique : depuis l’équinoxe d’automne du 26 septembre 147 av. J.C et la dernière celle de la position de la Lune le 7 juillet 127. Pline l’ancien nous explique l’importance du catalogue d’Hipparque :

« Il osa ainsi faire quelque chose qui serait téméraire même pour un dieu : à savoir, compter le nombre des étoiles à l’intention de ses successeurs et réviser nommément la liste des constellations. Pour ce faire, il inventa des instruments qui permettaient d’indiquer leurs diverses positions et leurs grandeurs, de façon que l’on pût découvrir facilement, non seulement si certains astres périssaient et naissaient mais encore si l’un ou l’autre changeait de position, ou était en mouvement, et aussi s’ils croissaient ou décroissaient en grandeur. Il laissa ainsi le ciel en héritage à l’humanité, si l’on avait pu trouver quelqu’un qui eût été en mesure de revendiquer cet héritage ». (Pline, Histoire naturelle, II, 25, 95).

Ce catalogue d’Hipparque ne nous est pas parvenu. Son existence nous est notamment connue par Ptolémée qui ne cache pas sa dette à l’égard d’Hipparque. Il donnait la position de 850 étoiles (longitudes et latitudes).

Les observations d’Hipparque l’ont conduit à la découverte d’une donnée astronomique capitale : la précession des équinoxes. Les positions des points ne sont pas constantes par rapport aux étoiles fixes : elles se déplacent d’est en ouest de 50 secondes angulaires par an.

C’est en comparant ses observations avec celles faites 160 ans auparavant par deux astronomes (Aristille (vers 300 av. J.C) et Timocharis (300 av. J. C.)) qu’Hipparque a montré le changement de position des points équinoxiaux. Il a même donné une valeur de la vitesse de ce changement : considérant un mouvement uniforme, Hipparque conclut à un déplacement d’1 degré tous les 100 ans, c’est-à-dire 36 secondes angulaires tous les ans.

Trois problèmes

Sans doute est-ce cette dernière irrégularité qui déclencha le processus et fit jaillir l’étincelle. Il était en effet possible, simplement, naturellement, conformément aux principes platoniciens, de forger une solution à ce problème là. Si le Soleil parcourt uniformément un cercle (sur une sphère) dont le centre est la terre, l’affaire est sans solution ; mais si le centre du cercle est quelque peu distant de la terre, le nœud est immédiatement débrouillé. Tel est le concept fondamental de l’excentrique. (ici il est fixe).

Un schéma précis est donné in Gapaillard, p.71

Deux arcs de cercle de même longueur, vus de la Terre, ne correspondent pas à des angles égaux ; voici pourquoi, selon que le soleil est proche de la terre (lorsqu’il est à son périgée), il semble évidemment plus grand mais aussi plus rapide que lorsqu’il est plus éloigné de nous (à son apogée) où il apparaît à la fois plus petit et plus lent.
Les conséquences de ce phénomène sont importantes : inégalité des saisons mais aussi précession des équinoxes : leur position, par rapport aux étoiles se décale un peu chaque année, si bien qu’il y a deux sortes d’année : l’année sidérale qui est le temps mis par le soleil, vu de la terre pour retrouver sa position par rapport aux étoiles et l’année tropique qui est le temps entre deux équinoxes de printemps. Celle-ci est plus courte que la première (environ 20’ et 24 secondes). C’est toute l’affaire des calendriers qui redéfinit l’année civile au plus près de l’année tropique.

Chaque médaille a son revers et la simplicité, l’efficacité de ce cercle excentré, de cet excentrique, se paie d’un prix fort : la terre n’est plus au centre de la rotation solaire, autant dire du monde et le soleil ne tourne plus qu’autour d’un point géométrique, autant dire autour d’un rien ! Toute conception physicienne de cette situation est forcément en difficulté (le « lieu naturel » ou le centre de force, où le centre d’attraction). Quoiqu’il en soit, la solution, simple pour le soleil, puisqu’il y a un excentrique fixe, a peu à peu prévalu sous l’influence - vraisemblablement - des pythagoriciens. Le modèle du soleil est bien établi par Hipparque et c’est à peu de chose le même que reprendra Ptolémée.

L’épicycle

Une remarque doit être faite ici qui sera commentée plus tard : un cercle épicycle donne le même résultat que l’excentrique.

La présentation donnée ici est évidemment extrêmement simplificatrice : les modèles déférents et épicycles doivent être distingués et modifiés selon qu’il s’agit d’une planète inférieure ou supérieure ; la double rotation peut expliquer les mouvements et anomalies en longitude, mais pas les déplacements transversaux par rapport à l’écliptique. La hauteur des planètes par rapport au plan de l’écliptique reste mal représentée par ce modèle.

A qui doit-on cette doctrine ? Peut-être à Théon de Smyrne (IV ème av. JC), ou encore à Adraste d’Aphrodise (IVème av. JC.) ; elle est en tout cas, assez bien établie (en tout cas sous sa forme épicyclique) à la fin du IIIème av. JC. par le grand mathématicien Apollonius de Perge, l’« inventeur » des coniques (-260 ; -180). Théon indique que Platon la connaissait (Duhem, p. 83). A lire le Timée ou La république, ceci est faux.

Le « théorème d’Hipparque ». L’équivalence des hypothèses.

L’astronome bithynien développa avec soin deux modèles : celui du soleil et celui de la lune, en les considérant de manière indépendante et autonome. Il utilise aussi un excentrique pour la lune.

L’Épicycle

Hipparque utilise une autre hypothèse géométrique, un autre dispositif possible, l’épicycle. On peut remplacer le décentrage, l’excentrique par un petit cercle sur le grand : l’épicycle.

Dans sa forme la plus générale, voici en quoi consiste le modèle épicyclique : A chaque planète correspond un cercle déférent, tracé dans le plan de l’écliptique et ayant la terre comme centre. Un certain point C décrit ce cercle déférent d’un mouvement uniforme ; un tour correspond à la durée de révolution zodiacale de la planète. Mais ce point ne représente pas la planète, il est - lui-même - le centre d’un cercle épicycle que parcourt la planète d’un mouvement uniforme. La planète est donc entraînée, relativement à
la terre, par deux mouvements circulaires combinés, comme dans ces manèges où une nacelle tourne sur elle-même alors qu’elle est entraînée toute entière dans un vaste mouvement circulaire.

Voici que ce grand manège explique assez bien les stations et rétrogradations dans le zodiaque : vue de la terre, la planète semble bien s’arrêter, reculer, puis repartir dans sa direction principale.

L’équivalence des deux systèmes.
En réglant convenablement le rayon et la vitesse des rotations, on obtient la même position de S par rapport à T. Telle est la méthode de l’épicycle, équivalent à l’excentrique. (Cf. Gapaillard, p.72)
Schéma de l’équivalence épicycle-excentrique :
1. Un point parcourt un petit cercle autour de T, à la vitesse α et P décrit un grand cercle autour de C, à la vitesse β
2. Un point parcourt un grand cercle autour de T, à la vitesse β et P décrit un petit cercle autour de C, à la vitesse α
Le résultat apparent est le même.

Les stations et rétrogradations reçoivent une explication, en principe.

Commentaires
Il fallait, dans ces deux cas, et en reprenant les méthodes géométriques de l’épicycle, du déférent et de l’excentrique, régler avec le maximum d’exactitude les différents paramètres qui sauveraient les
apparences : le rapport des rayons des différents cercles, leur vitesse de rotation. Pour le soleil et la lune, le succès est au rendez-vous et les modèles d'Hipparque seront suivis de près par Ptolémée.

Comme toute solution, celle-ci apporte avec elle de nouveaux problèmes ; ceux que suggèrent les travaux d'Hipparque ne sont pas mineurs. On en évoquera deux :

Si elle convient pour le soleil et la lune, la théorie ne suffit pas pour les mouvements des planètes ; Les phénomènes, les hypothèses et les modèles

La lune, vue de la terre, est animée de certains mouvements : ces mouvements apparents, ce sont les phénomènes, ce que nous pouvons voir et mesurer. La lune, dans les cieux, parcourt certaine trajectoire réelle relativement au centre de la terre et aux étoiles fixes, cette trajectoire est en elle-même plus objective que les apparences données par les observations ; il y a plus et pour se conformer à une forte conviction, elle parcourt à vitesse uniforme des cercles déterminés qui existent dans les cieux et qui sont plus fondamentalement encore la vérité de ses mouvements, ce qu’on appelle alors et pour longtemps la nature des choses.

Connaitre ces cercles, c’est connaître les véritables mouvements de l’astre, c’est connaître les véritables causes des phénomènes, des apparences.

Les doctrines du déférent, de l’épicycle, de l’excentrique sont les réponses à cette recherche des causes des mouvements apparents. Or voici ce que découvre Hipparque : deux modèles complètement différents, incompatibles l’un avec l’autre (c’est-à-dire, ne pouvant être vrais ensembles), expliquent aussi bien l’un que l’autre les phénomènes de la lune ; la situation est la même pour le soleil, de manière encore plus simple comme on l’a vu puisque l’excentrique est fixe.

Il y avait donc deux représentations contradictoires qui s’adaptaient à la même collection de faits d’observation ; les deux théories ne peuvent être des explications véritables en même temps. Une sorte de preuve est ainsi administrée du statut profondément distinct de la connaissance géométrique et de la connaissance physique des lois de la nature et des phénomènes. (Imaginons le type de situation pour des doctrines comme la théorie ondulatoire ou émissioniste de la lumière ou les deux fluides électriques).

Ainsi écrit Pierre Duhem, en citant largement Théon de Smyrne :

« Hipparque ... astronomiques » (Sauver les phénomènes, p. 6-7-8 jusqu’à la page 11).

On n’aura dès lors plus de moyen de connaître la vérité ! Si deux hypothèses sont tout aussi valables, comment pourrions-nous décider que l’une est la véritable ? Et pourquoi ne pas imaginer qu’il en existe encore une autre, ou plusiers que nous n’avons pas imaginées ? Une cascade de questions fondamentales prend ici sa source et deux immenses courants de la pensée scientifique se dessinent :

Selon la première de ces orientations, le savant, le physicien, l’astronome doit renoncer à dire comment sont les choses ‘en vérité’, il doit abandonner la recherche des ‘causes ultimes’ des phénomènes ; sa tâche est de produire des hypothèses qui peuvent être justes, qui permettent de décrire, de prévoir, de connaître les phénomènes. La science ne les explique pas, elle les représente. Appelons-la phénoméniste ou même conventionnaliste.

La seconde orientation est plus réaliste : elle poursuit la quête de la véritable explication des choses. Les épicycles mais aussi les excentriques fournissent deux bons modèles du soleil ou de la lune ; soit, mais l’un des deux est le bon et il convient de découvrir lequel. Pour cela, nous pouvons emprunter différentes voies :
La première, *a priori* partira d’arguments très généraux comme « le monde fonctionne selon la simplicité maximale », ou « il correspond à tel plan divin », ou encore « la beauté est le critère de la vérité » etc.

La seconde voie consistera à imaginer des expériences qui invalideront une des hypothèses candidates et retiendront donc, comme vraie, celle qui n’aura pas été invalidée. C’est la doctrine de l’*experimentum crucis*, théorisée par Francis Bacon de Verulam.

Cette immense discussion n’a jamais été close et se poursuit aujourd’hui dans à peu près tous les domaines de la science. Il est remarquable de pouvoir en situer précisément un de ses principaux moments originaires : le théorème d’Hipparque selon lequel les mouvements apparents de la lune, ou du soleil s’expliquent tout aussi bien par la doctrine des épicycles que par celle des excentriques.

On doit aussi noter que, lors de cette discussion, on trouve une évocation - purement hypothétique - faite par Posidonius (-135 ; -51) de l’équivalence possible des systèmes géocentriques et héliocentrique. On imagine l’importance de cette discussion 16 siècles plus tard.