1 Correction des exercices de déduction naturelle – 2

1.1
Vous démontrerez que l'on peut dériver $\exists x \neg P x$ à partir de la prémisse $\neg \forall x P x$.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\neg \forall x P x$</td>
<td>P</td>
</tr>
<tr>
<td>2</td>
<td>$\neg \exists x \neg P x$</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>$\neg P a$</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>$\exists x \neg P x$</td>
<td>$\exists I, 3$</td>
</tr>
<tr>
<td>5</td>
<td>$\neg \exists x \neg P x$</td>
<td>R2</td>
</tr>
<tr>
<td>6</td>
<td>$\neg \neg P a$</td>
<td>$\neg I, 3-5$</td>
</tr>
<tr>
<td>7</td>
<td>$P a$</td>
<td>$\neg E, 6$</td>
</tr>
<tr>
<td>8</td>
<td>$\forall x P x$</td>
<td>$\forall I, 7$</td>
</tr>
<tr>
<td>9</td>
<td>$\neg \forall x P x$</td>
<td>R1</td>
</tr>
<tr>
<td>10</td>
<td>$\neg \exists x \neg P x$</td>
<td>$\neg I, 2-8$</td>
</tr>
<tr>
<td>11</td>
<td>$\exists x \neg P x$</td>
<td>$\neg E, 10$</td>
</tr>
</tbody>
</table>

1.2
Vous démontrerez que l'on peut dériver $\exists x G x \rightarrow (\neg A \land B)$ à partir de la prémisse $\forall x[G x \rightarrow (\neg A \land B)]$.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\forall x[G x \rightarrow (\neg A \land B)]$</td>
<td>P</td>
</tr>
<tr>
<td>2</td>
<td>$\exists x G x$</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>$\forall x G a$</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>$\forall x[G x \rightarrow (\neg A \land B)]$</td>
<td>R1</td>
</tr>
<tr>
<td>5</td>
<td>$G a \rightarrow (\neg A \land B)$</td>
<td>$\forall E, 4$</td>
</tr>
<tr>
<td>6</td>
<td>$(\neg A \land B)$</td>
<td>$\rightarrow E, 3, 5$</td>
</tr>
<tr>
<td>7</td>
<td>$(\neg A \land B)$</td>
<td>$\exists E, 2, 3-6$</td>
</tr>
<tr>
<td>8</td>
<td>$\exists x G x \rightarrow (\neg A \land B)$</td>
<td>$\rightarrow I, 2-7$</td>
</tr>
</tbody>
</table>

1.3
Vous démontrerez que l'on peut dériver $\exists x(F x \land G x d)$ à partir de la prémisse $\forall x F x \land \forall x G x d$.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\forall x F x \land \forall x G x d$</td>
<td>P</td>
</tr>
<tr>
<td>2</td>
<td>$\forall x F x$</td>
<td>$\land E, 1$</td>
</tr>
<tr>
<td>3</td>
<td>$\forall x G x d$</td>
<td>$\land E, 1$</td>
</tr>
<tr>
<td>4</td>
<td>$F a$</td>
<td>$\forall E, 2$</td>
</tr>
<tr>
<td>5</td>
<td>$G a d$</td>
<td>$\forall E, 3$</td>
</tr>
<tr>
<td>6</td>
<td>$F a \land G a d$</td>
<td>$\land I, 4, 5$</td>
</tr>
<tr>
<td>7</td>
<td>$\exists x(F x \land G x d)$</td>
<td>$\exists I, 6$</td>
</tr>
</tbody>
</table>
1.4
Vous démontrerez que l'on peut dériver $\forall x(B \rightarrow Mdx)$ à partir de la prémisse $B \rightarrow \forall x(Mdx)$.

\[
\begin{array}{|l|l|}
\hline
1 & B \rightarrow \forall x(Mdx) & P \\
2 & B & A \\
3 & B \rightarrow \forall x(Mdx) & R1 \\
4 & \forall xMdx & \rightarrow E, 2, 3 \\
5 & M\dot{a} & \forall E, 4 \\
6 & B \rightarrow M\dot{a} & \rightarrow I, 2-5 \\
7 & \forall x(B \rightarrow Mdx) & \forall I, 6 \\
\hline
\end{array}
\]

1.5
Vous démontrerez que l'on peut dériver $\exists x(Hx \land \neg Sx)$ à partir des prémisses $\forall x(Sx \rightarrow Bx)$ et $\exists x(Hx \land \neg Bx)$.

\[
\begin{array}{|l|l|}
\hline
1 & \forall x(Sx \rightarrow Bx) & P \\
2 & \exists x(Hx \land \neg Bx) & P \\
3 & \exists Ha \land \neg Ba & A \\
4 & Ha & \land E, 3 \\
5 & \neg Ba & \land E, 3 \\
6 & \forall x(Sx \rightarrow Bx) & R1 \\
7 & Sa \rightarrow Ba & \forall E, 6 \\
8 & Sa & A \\
9 & Sa \rightarrow Ba & R7 \\
10 & Ba & \rightarrow E, 7, 8 \\
11 & \neg Ba & R5 \\
12 & \neg Sa & \neg I, 8-11 \\
13 & Ha \land \neg Sa & \land I, 4, 12 \\
14 & \exists x(Hx \land \neg Sx) & \exists I, 13 \\
15 & \exists x(Hx \land \neg Sx) & \exists E, 2, 3-14 \\
\hline
\end{array}
\]

1.6
Vous démontrerez que l'on peut dériver $\exists x(Hx \land Mx)$ à partir des prémisses $\exists x(Nx \land Hx)$ et $\forall x(Nx \rightarrow Mx)$.
Vous démontrerez que l'on peut dériver \(\exists x(Fx \land Bx) \) à partir des prémisses \(\exists xFx, \forall x(Fx \rightarrow Sx) \) et \(\forall x(Sx \rightarrow Bx) \).